
Copyright © 2018 – P4.org

CS344 – Lecture 3

Copyright © 2018 – P4.org

P4 Toolchain for BMv2 software simulation

2

Copyright © 2018 – P4.org

Basic Workflow

3

simple_switch_CLI
Program-independent

CLI and Client

TCP Socket
(Thrift)

Packet
sniffer

Packet
generator si

m
pl

e_
sw

itc
h

 (B
M

v2
)

Program-independent
Control Server

Egress

In
gr

es
s

PRE

Parser Deparser

Port Interface

L
o
g

test.p4

test.json

test.jsontest.json

p4c-bm2-ss

Linux Kernel
veth0..n

D
e
b
u
g

P4
Debugger

Copyright © 2018 – P4.org

Step 1: P4 Program Compilation

4

test.p4

test.json

$ p4c-bm2-ss -o test.json test.p4

p4c-bm2-ss

Copyright © 2018 – P4.org

Linux
Kernel

Step 2: Preparing veth Interfaces

5

veth 0 2 4 2n

test.p4

test.jso
n

test.jso
ntest.json

$ sudo ~/p4lang/tutorials/examples/veth_setup.sh

ip link add name veth0 type veth peer name veth1
for iface in “veth0 veth1”; do

ip link set dev ${iface} up
sysctl net.ipv6.conf.${iface}.disable_ipv6=1
TOE_OPTIONS="rx tx sg tso ufo gso gro lro rxvlan txvlan rxhash”
for TOE_OPTION in $TOE_OPTIONS; do

/sbin/ethtool --offload $intf "$TOE_OPTION”
done

done

1 3 5 2n
+1veth

Copyright © 2018 – P4.org

Step 3: Starting the model

6

TCP Socket
(Thrift)

test.p4

$ sudo simple_switch --log-console --dump-packet-data 64 \
–i 0@veth0 -i 1@veth2 … [--pcap] \
test.json

veth0.pcap

BM
v2

Program-independent
Control Server

Egress

In
gr

es
s

PRE

Parser Deparser

Port Interface

L
o
g
g
i
n
g

Linux Kernel
veth0..n

test.jso
n

test.jso
ntest.json

Copyright © 2018 – P4.org

Linux Kernel

Step 4: Starting the CLI

7

BMv2 CLI
Program-independent

CLI and Client

TCP Socket
(Thrift)

veth0..n
BM

v2

Program-independent
Control Server

Egress

In
gr

es
s

PRE

Parser Deparser

Port Interface

L
o
g
g
i
n
g

test.p4

test.jso
n

test.jsontest.json

test.json

$ simple_switch_CLI

Copyright © 2018 – P4.org

Step 5: Sending and Receiving Packets

8

BM
v2

Program-independent
Control Server

Egress
In

gr
es

s

PRE

Parser Deparser

Port Interface

L
o
g
g
i
n
g

test.json

Linux
Kernel

veth 0 2 4 2n

1 3 5 2n
+1veth

Packet
Generator

Packet
Sniffer

• scapy
sniff(iface=“veth9”, prn=lambda x: x.show())

• Wireshark, tshark, tcpdump

• scapy
p = Ethernet()/IP()/UDP()/”Payload”
sendp(p, iface=“veth0”)

• Ethereal, etc..

Copyright © 2018 – P4.org 9

Overview

Copyright © 2018 – P4.org

NetFPGA = Networked FPGA

•A line-rate, flexible, open networking platform for teaching and
research

10

Copyright © 2018 – P4.org

NetFPGA Family of Boards

11

NetFPGA-10G (2010)

NetFPGA-1G (2006)

NetFPGA-1G-CML (2014) NetFPGA-SUME (2014)

Copyright © 2018 – P4.org

International Community

•Over 1,200 users, using over 3500 cards at 200 universities in
over 47 countries

12

• Join the mailing list: cl-netfpga-sume-beta@lists.cam.ac.uk

Copyright © 2018 – P4.org

NetFPGA board

13

PC with NetFPGA

Networking
Software
running on a
standard PC

A hardware
accelerator built
with FPGA driving
1/10/ 100Gb/s
network links

FPGA

Memory

10GbE

10GbE

10GbE

10GbE

PCI-Express

CPU Memory

Copyright © 2018 – P4.org

NetFPGA consists of …

Four elements:

•NetFPGA board

• Tools + reference designs

•Contributed projects

•Community

14

Copyright © 2018 – P4.org

Xilinx Virtex 7 690T

• Optimized for high-
performance
applications

• 690K Logic Cells

• 52Mb RAM

• 3 PCIe Gen. 3
Hard cores

15

Copyright © 2018 – P4.org

Memory Interfaces

•DRAM:
2 x DDR3 SoDIMM
1866MT/s, 4GB

• SRAM:
3 x 9MB QDRII+, 500MHz

16

Copyright © 2018 – P4.org

Host Interface

• PCIe Gen. 3

• x8 (only)

•Hardcore IP

17

Copyright © 2018 – P4.org

Front Panel Ports

• 4 SFP+ Cages
• Directly connected to

the FPGA
• Supports 10GBase-R

transceivers (default)
• Also Supports

1000Base-X
transceivers and
direct attach cables

18

Copyright © 2018 – P4.org

Expansion Interfaces

• FMC HPC connector
◦ VITA-57 Standard
◦ Supports Fabric Mezzanine

Cards (FMC)
◦ 10 x 12.5Gbps serial links

•QTH-DP
◦ 8 x 12.5Gbps serial links

19

Copyright © 2018 – P4.org

Storage

• 128MB FLASH

• 2 x SATA connectors

• Micro-SD slot

• Enable standalone
operation

20

Copyright © 2018 – P4.org

Reference Switch Pipeline

• Five stages
◦ Input port
◦ Input arbitration
◦ Forwarding decision and packet

modification
◦ Output queuing
◦ Output port

• Packet-based module
interface

• Pluggable design

21

10GE
RxQ

10GE
RxQ

10GE
RxQ

10GE
RxQ DMA

Input Arbiter

Output Port
Lookup

Output Queues

10GE
Tx

10GE
Tx

10GE
Tx

10GE
Tx DMA

Copyright © 2018 – P4.org

Full System Components

22

Software

PCIe Bus

NetFPGA

AXI Lite

user data path

Registers

nf0 nf1 nf2 nf3 ioctl

Ports

CPU
RxQ

CPU
TxQ

10GE
Tx

10GE
Rx

Copyright © 2018 – P4.org

NetFPGA – Host Interaction

• Linux driver interfaces with hardware

◦ Packet interface via standard Linux network stack

◦ Register reads/writes voa ioctl system call with wrapper functions

■ rwaxi(int address, unsigned *data);

■ Eg: rwaxi(0x7d4000000, &val)

23

Copyright © 2018 – P4.org

NetFPGA to Host Packet Transfer

24

1. Packet arrives –
forwarding table
sends to DMA
queue

2. Interrupt notifies
driver of packet arrival

3. Driver sets up and
initiates DMA transfer

PC
Ie

Bus

Copyright © 2018 – P4.org

NetFPGA to Host Packet Transfer

25

4. NetFPGA transfers
packet via DMA

5. Interrupt signals
completion of DMA

PC
Ie

Bus
6. Driver passes packet
to network stack

Copyright © 2018 – P4.org

Host to NetFPGA Packet Transfer

26

2. Driver sets up and
initiates DMA transfer

3. Interrupt signals
completion of DMA

PC
Ie

Bus

1. Software sends packet
via network sockets.
Packet delivered to driver

Copyright © 2018 – P4.org

NetFPGA Register Access

27

2. Driver performs
PCIe memory
read/write

PC
Ie

Bus

1. Software makes ioctl call
on network socket. ioctl
passed to driver

Copyright © 2018 – P4.org 28

Overview

Copyright © 2018 – P4.org

General Process for Programming a P4 Target

29

P4 Architecture
Model

P4 Compiler

Target-specific
configuration

binary
Data PlaneTables Extern

objectsLoad

Target

P4 Program

Control Plane

Add/remove
table entries

CPU port

Packet-in/outExtern
control

R
U

N
TI

M
E

P4->NetFPGA tools

SimpleSumeSwitch
Architecture NetFPGA SUME

Copyright © 2018 – P4.org

P4àNetFPGA Compilation Overview

30

P4 Program

Xilinx P416 Compiler

Xilinx SDNet Tools

SimpleSumeSwitch Architecture

NetFPGA Reference Switch

10GE
RxQ

10GE
RxQ

10GE
RxQ

10GE
RxQ DMA

Input Arbiter

Output Port
Lookup

Output Queues

10GE
Tx

10GE
Tx

10GE
Tx

10GE
Tx DMA

SimpleSume
Switch

Copyright © 2018 – P4.org

Xilinx SDNet Design Flow & Use Model

Page 31

Packet Processing Spec.
• PX (domain specific language)
• describe function in

packet-oriented terms

.sdnet

HDL description

Firmware

SDNet Compiler
• Throughput & Latency
• Resources
• Programmability

Tailored Packet Processor

Copyright © 2018 – P4.org

Xilinx P4 Design Flow & Use Model

Page 32

.p4 .sdnet

Verification Environment

System Verilog
Testbench

Lookup Engine
C++ Drivers

High level C++
Testbench

Top level Verilog
wrapper

Verilog
Engines

(Encrypted)

Xilinx P416 Compiler

$ p4c-sdnet switch.p4

Copyright © 2018 – P4.org

Considerations When Mapping to SDNet

• Identifying parallelism within P4 parser and control blocks
◦ table lookups
◦ actions
◦ etc.

• P4 packet processing model
◦ extract entire header from packet
◦ updates apply directly to header
◦ deparser re-inserts header back into packet

• SDNet packet processing model
◦ stream packet through “engines”
◦ modify header values in-line without removing and re-inserting

Page 33

Copyright © 2018 – P4.org

Mapping P4 Architectures to SDNet

Page 34

Parser
Ingress
Match+Action

Egress
Match+Action Deparser

Parsing
Engine

Editing
Engine

Lookup
Engine

Editing
EngineLookup

Engine
Editing
EngineLookup

Engine
Editing
Engine

read packet
write tuples

read tuples
write tuples

read tuples
write packet

Copyright © 2018 – P4.org

Support for Multiple Architectures

Page 35

SimpleSumeSwitch Only Parser
Ø Pull information from packet w/o updates

Copyright © 2018 – P4.org

SimpleSumeSwitch Architecture Model for SUME Target

• P4 used to describe parser, match-action pipeline, and deparser
36

tdata

AXI
Lite

tdata

AXI
Lite

tusertuser

Copyright © 2018 – P4.org

Standard Metadata in SimpleSumeSwitch Architecture
/* standard sume switch metadata */
struct sume_metadata_t {

bit<16> dma_q_size;
bit<16> nf3_q_size;
bit<16> nf2_q_size;
bit<16> nf1_q_size;
bit<16> nf0_q_size;
bit<8> send_dig_to_cpu; // send digest_data to CPU
bit<8> dst_port; // one-hot encoded
bit<8> src_port; // one-hot encoded
bit<16> pkt_len; // unsigned int

}

37

*_q_size – size of each output queue, measured in terms of 32-byte words, when packet starts being

processed by the P4 program

src_port/dst_port – one-hot encoded

user_metadata/digest_data – structs defined by the user

Copyright © 2018 – P4.org

Interface Naming Conventions

38

AXI Lite

user data path

Registers

nf0 nf1 nf2 nf3 ioctl

Ports

CPU
RxQ

CPU
TxQ

10GE
Tx

10GE
Rx

src / dst port fields:
x-x-x-x-x-x-x-x

nf3 nf2 nf1 nf0

Copyright © 2018 – P4.org

Overall P4 Program Structure
#include <core.p4>
#include <sume_switch.p4>

/******** CONSTANTS ********/
#define IPV4_TYPE 0x0800

/******** TYPES ********/
typedef bit<48> EthAddr_t;
header Ethernet_h {...}
struct Parsed_packet {...}
struct user_metadata_t {...}
struct digest_data_t {...}

/******** EXTERN FUNCTIONS ********/
extern void const_reg_rw(...);

/******** PARSERS and CONTROLS ********/
parser TopParser(...) {...}
control TopPipe(...) {...}
control TopDeparser(...) {...}

/******** FULL PACKAGE ********/
SimpleSumeSwitch(TopParser(), TopPipe(), TopDeparser()) main;

39

Copyright © 2018 – P4.org

P4àNetFPGA Extern Function library

• Implement platform specific functions
• Black box to P4 program

• Implemented in HDL
• Stateless – reinitialized for each packet
• Stateful – keep state between packets
• Xilinx Annotations

• @Xilinx_MaxLatency() – maximum number of clock cycles an extern function needs to
complete

• @Xilinx_ControlWidth() – size in bits of the address space to allocate to an extern
function

40

Stateless vs. stateful operations

pkt.tmp =
pkt.f1 + pkt.f2

Stateless operation: pkt.f4 = pkt.f1 + pkt.f2 – pkt.f3

pkt.f4 =
pkt.tmp - pkt.f3

f1

f2

f3

f4 =
tmp – f3
tmp = f1

+ f2

f1

f2

f3
f4

tmp = f1
+ f2

f1

f2

f3
f4

tmp
Can pipeline stateless operations

Stateless vs. stateful operations
Stateful operation: x = x + 1

pkt.tmp = x pkt.tmp ++ x = pkt.tmptmp tmp
= 0

tmp
= 1

tmp tmp
= 0

tmp
= 1

X = 1X = 0

X should be 2,
not 1!

Stateless vs. stateful operations
Stateful operation: x = x + 1

X++tmp

X

Cannot pipeline, need atomic operation in h/w

Copyright © 2018 – P4.org

P4àNetFPGA Extern Function library

44

• HDL modules invoked from within P4 programs
• Stateful Atoms [1]

• Stateless Externs

• Add your own!

Atom Description

R/W Read or write state

RAW Read, add to, or overwrite state

PRAW Predicated version of RAW

ifElseRAW Two RAWs, one each for when predicate is true or false

Sub IfElseRAW with stateful subtraction capability

Atom Description
IP Checksum Given an IP header, compute IP checksum

LRC Longitudinal redundancy check, simple hash function

timestamp Generate timestamp (granularity of 5 ns)
[1] Sivaraman, Anirudh, et al. "Packet transactions: High-level programming for line-rate switches." Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 2016.

Copyright © 2018 – P4.org

Adding Custom Externs

1. Implement verilog extern module

2. Add entry to $SUME_SDNET/bin/extern_data.py

• No need to modify and existing code

• AXI Lite control interface module auto generated

45

Copyright © 2018 – P4.org

Using Atom Externs in P4 – Resetting Counter

Packet processing pseudo code:

count[NUM_ENTRIES];

if (pkt.hdr.reset == 1):
count[pkt.hdr.index] = 0

else:
count[pkt.hdr.index]++

46

Copyright © 2018 – P4.org

Using Atom Externs in P4 – Resetting Counter

47

#define REG_READ 0
#define REG_WRITE 1
#define REG_ADD 2
// count register
@Xilinx_MaxLatency(64)
@Xilinx_ControlWidth(3)
extern void count(in bit<3> index, in bit<32> newVal,

in bit<32> incVal,in bit<8> opCode,
out bit<32> result);

bit<16> index = pkt.hdr.index;
bit<32> newVal; bit<32> incVal; bit<8> opCode;
if(pkt.hdr.reset == 1) {

newVal = 0;
incVal = 0; // not used
opCode = REG_WRITE;

} else {
newVal = 0; // not used
incVal = 1;
opCode = REG_ADD;

}

bit<32> result; // the new value stored in count reg
count_reg_raw(index, newVal, incVal, opCode, result);

u State can be accessed exactly 1 time
u Using RAW atom here

Instantiate atom

Set metadata for state access

Single state access!

Copyright © 2018 – P4.org

API & Interactive CLI Tool Generation

• Both Python API and C API

• Manipulate tables and stateful elements in P4 switch
• Used by control-plane program

• CLI tool
• Useful debugging feature
• Query various compile-time information
• Interact directly with tables and stateful externs in at run time

48

Copyright © 2018 – P4.org

P4àNetFPGA Workflow

49

1. Write P4 program

2. Write externs

3. Write python gen_testdata.py script

4. Compile to Verilog / generate API & CLI tools

5. Run simulations

6. Build bitstream

7. Check implementation results

8. Test the hardware

All of your effort
will go here

pa
ss

fa
il

Copyright © 2018 – P4.org

Debugging P4 Programs

• SDNet HDL Simulation

• SDNet C++ simulation
◦ Verbose packet processing info

◦ Output PCAP file

• Full SUME HDL simulation

•Custom Python Model

50

Copyright © 2018 – P4.org

Assignment 1: Switch as a Calculator

51

Copyright © 2018 – P4.org

Switch as a Calculator

• Supported Operations
◦ ADD – add two operands
◦ SUBTRACT – subtract two operands
◦ ADD_REG – add operand to current value in the register
◦ SET_REG – overwrite the current value in the register
◦ LOOKUP – Lookup the given key in the table

52

header Calc_h {
bit<32> op1;
bit<8> opCode;
bit<32> op2;
bit<32> result;

}

Copyright © 2018 – P4.org

Switch as a Calculator

53

DST: MAC1
SRC: MAC2
Type: CALC_TYPE

Ethernet

Calc

Payload…

User PC NetFPGA SUME

op1: 1
opCode: ADD
op2: 2
result: 0

Copyright © 2018 – P4.org

Switch as a Calculator

54

DST: MAC1
SRC: MAC2
Type: CALC_TYPE

Ethernet

Calc

Payload…

op1: 1
opCode: ADD
op2: 2
result: 0 3X

User PC NetFPGA SUME

Copyright © 2018 – P4.org

Switch as a Calculator

55

DST: MAC2
SRC: MAC1
Type: CALC_TYPE

Ethernet

Calc

Payload…

op1: 1
opCode: ADD
op2: 2
result: 3

User PC NetFPGA SUME

Copyright © 2018 – P4.org

Switch Calc Operations

56

ADD

result

op1 op2

+

SUB

result: op1-op2

op1 op2

-

ADD_REG

result

op2 const[op1]

+

SET_REG

const[op1]

op2

LOOKUP

result:
val

key:
op1

key val

0 1

1 16

2 162

3 163

Copyright © 2018 – P4.org

FIN

57

Copyright © 2018 – P4.org

Research topics

58

Copyright © 2018 – P4.org

Examples of ongoing P4 Research Topics

• P4 Infrastructure
◦ Programmable scheduling
◦ Programmable target architectures
◦ PacketMod

•Data-plane Programs
◦ In-band network telemetry
◦ Congestion control
◦ Load balancing

•Networking-Offloading Applications
◦ Aggregation for MapReduce applications
◦ Key-value caching
◦ Consensus

59

Copyright © 2018 – P4.org

Programmable Scheduling

60

Sivaraman, Anirudh, et al. "Programmable packet scheduling at line rate." Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 2016.

Copyright © 2018 – P4.org

Why scheduler is not programmable ... so far

● Plenty of scheduling algorithms, but no consensus on right
abstractions. Contrast to:
○ Parse graphs for parsing
○ Match-Action tables for forwarding

● Scheduler has tight timing requirements
○ One decision every few ns

61

Copyright © 2018 – P4.org

What does the Scheduler do?

Decides:
● In what order are packets sent?

○ Ex: FCFS, Priorities, WFQ
● At what time are packets sent?

Key observation:
● For many algorithms, the relative order in which packets are

sent does not change with future arrivals
○ i.e. scheduling order can be determined before enqueue

62

Copyright © 2018 – P4.org

PIFO

● PIFO - proposed abstraction that can be used to implement
many scheduling algorithms

● Packets are pushed into an arbitrary location based on
computed rank

63

Rank Computation PIFO scheduler

(programmable) (fixed logic)

Copyright © 2018 – P4.org

PIFO Tree

64

Copyright © 2018 – P4.org

PIFO Remarks

● Very limited scheduling in modern switching chips
○ Deficit Round Robin, traffic shaping, strict priorities

● Scheduling algorithms that can be implemented with PIFO
○ Weighted Fair Queueing, Token Bucket Filtering, Hierarchical Packet Fair

Queueing, Least-Slack Time-First, the Rate Controlled Service Disciplines,
and fine-grained priority scheduling (e.g., Shortest Job First)

● PIFO cannot implement algorithms that require
○ Changing the scheduling order of all packets of a flow
○ Output rate limiting

● PIFO implementation feasibility?

65

Copyright © 2018 – P4.org

Programmable Target Architectures

Observations:
◦ Current P4 expectation: target architectures are fixed, specified in English

◦ FPGAs can support many different architectures

Idea:
◦ Extend P4 to allow description of target architectures
■ More precise definition than English description

◦ Generate implementation on FPGA

◦ Easily integrate custom modules

◦ Explore performance tradeoffs of different architectures

66

Copyright © 2018 – P4.org

Many Possible Architectures…

67

DeparserM/AParser

M/AParser DeparserM/ATM

Output
Queues

Output
Queues

DeparserM/AParser DeparserM/AParserTM Output
Queues

SimpleSumeSwitch

V1 Model

Portable Switch Architecture

Copyright © 2018 – P4.org

Many Possible Architectures…

68

M/AParser DeparserM/ATM Output
Queues

Pkt
Gen

M/AParser DeparserM/AMy
TM

Output
Queues

Custom Traffic Manager

Programmable Packet Generator

Copyright © 2018 – P4.org

Programmable Target Architectures

69

package SimpleSumeSwitch<H, M, D>(
Parser<H, M, D> TopParser,
Pipe<H, M, D> TopPipe,
Deparser<H, M, D> TopDeparser) {

// Top level I/O
packet_in instream;
inout sume_metadata_t sume_metadata;
out D digest_data;
packet_out outstream;

// Connectivity of the architecture
connections {
// TopParser input connections
TopParser.b = instream;
TopParser.sume_metadata = sume_metadata;

// TopPipe <-- TopParser
TopPipe.p = TopParser.p;
TopPipe.user_metadata = TopParser.user_metadata;
TopPipe.digest_data = TopParser.digest_data;
TopPipe.sume_metadata = TopParser.sume_metadata;

// TopDeparser <-- TopPipe
TopDeparser.p = TopPipe.p;
TopDeparser.user_metadata = TopPipe.user_metadata;
TopDeparser.digest_data = TopPipe.digest_data;
TopDeparser.sume_metadata = TopPipe.sume_metadata;

// TopDeparser output connections
digest_data = TopDeparser.digest_data;
sume_metadata = TopDeparser.sume_metadata;
outstream = TopDeparser.b;

}
}

Copyright © 2018 – P4.org

Workflow

• Two Actors: (1) Target Architecture Designer, (2) P4 Programmer

70

Implements:
• non-P4 elements
• externs
in target architecture

Provides:
• P4+ architecture declaration

• Someone who is more familiar with FPGA development

Copyright © 2018 – P4.org

Workflow

• Two Actors: (1) Target Architecture Designer, (2) P4 Programmer

71

Implementation of P4 elements

PX subsystems

Compile to PX

P4+ architecture description

Compile to PX

Partial PX System

Complete PX System

HDL switch design

Compile to Verilog

Copyright © 2018 – P4.org

In-band Network Telemetry (INT)

72

1 Which path did my packet take?
“I visited: switch 1 @ 780ns,

switch 9 @ 1.3us,
switch 12 @ 2.4us

2 Which rules did my packet follow?

Rule

1

2

3

…

75 192.168.0
/24

…

“In switch 1, I followed rules
75 and 250.In switch 9, rules

3 and 80”

INT Slides courtesy of Nick McKeown

Copyright © 2018 – P4.org

In-band Network Telemetry (INT)

73

3 How long did my packet queue at each switch?“Delay: 100ns, 200ns, 19740ns”

Queue

Time

4 Who did my packet share the queue with?

INT Slides courtesy of Nick McKeown

Copyright © 2018 – P4.org

In-band Network Telemetry (INT)

74

1 Which path did my packet take?

2 Which rules did my packet follow?

3 How long did my packet queue at each switch?

4 Who did my packet share the queue with?

INT Slides courtesy of Nick McKeown

No need to add a single additional packet!

Copyright © 2018 – P4.org

Congestion Control

75

• Typical flows will finish in just a few RTTs as we
move towards higher link speeds

Adjust Flow
Rate

Measure
Congestion

• No use of explicit information about traffic matrix
• Can only react and move in right direction
• Reactive techniques are slow to converge

(10s-100s of RTTs)

Reactive Congestion Control

Copyright © 2018 – P4.org

Proactive Congestion Control

76

• Proactive
techniques
converge much
more quickly than
reactive

• Faster
convergence
times lead to
lower flow
completion timesproactive

proactive

Reactive

Proactive

10 Gbps

Copyright © 2018 – P4.org

An example proactive scheme

77

Flow A
10 Gb/s link

Control Packet

Per-flow state:
• BW demand
• Current bottleneck
Per-link state

Switch Computation

N = 1 flow
C = 10Gb/s

Fair share = C/N = 1 Gb/s

Switch Computation

N = 1 flow
C = 10Gb/s

Fair share = C/N = 1 Gb/s

Sending host
adjusts sending

rate

Copyright © 2018 – P4.org

An example proactive scheme

78

Flow B
Flow A
10 Gb/s link

Switch Computation

N = 2 flow
C = 10 Gb/s

Fair share = C/N = 5 Gb/s

Copyright © 2018 – P4.org

Proactive Algorithm in P4

79

L2
Forwarding

Logic

Set low priority

Set high priority

Read/update link state

Compute fair share rate

Set bandwidth demand

Priority
Output
Queuesis ctrl pkt

Copyright © 2018 – P4.org

In-Network Computation

• Programmable data plane hardware à opportunity to reconsider
division of computation

•What kinds of computation should be delegated to network?
•Network computations are constrained:
◦ Limited memory size (10’s of MB of SRAM)
◦ Limited set of actions (simple arithmetic, hashing, table lookups)
◦ Few operations per packet (10’s of ns to process each packet)

•Goals:
◦ Reduce: application runtime, load on servers, network congestion
◦ Increase: application scalability

80

Sapio, Amedeo, et al. "In-Network Computation is a Dumb Idea Whose Time Has Come." Proceedings of the 16th ACM Workshop on Hot Topics in
Networks. ACM, 2017.

Copyright © 2018 – P4.org

In-Network Aggregation

81

•Aggregate data at intermediate network nodes to reduce network
traffic

• Simple arithmetic operations at switches
•Widely applicable to many distributed applications
◦ Machine learning training
◦ Graph analytics
◦ MapReduce applications

Copyright © 2018 – P4.org

In-Network Aggregation

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

Data
volume

Reduce
time

packets
(UDP baseline)

R
e

d
u

ct
io

n
 [

%
]

 10

 15

 20

 25

 30

 35

 40

 45

 50

packets
(TCP baseline)

Figure 3: Reduction on the amount of data, running time
and number of packets received at reducers.

container is used to run the master. The 12 workers execute
a WordCount benchmark on an implementation of MapRe-
duce adapted to send the map results using DAIET. The input
dataset is a 500 MB file containing random words that are not
causing hash collisions.5 We do not test with a larger dataset
because the network aggregation is performed by bmv2 using
mainly a single core. We configure P4 registers to store 16K
key-value pairs, so that, with words of maximum 16 charac-
ters and a 4 B integer value, the total SRAM required would
be around 10 MB, which is a reasonable amount of memory
for a hardware P4 switch. To quantify the reduction, we run
the same benchmark in two other baseline scenarios without
in-network aggregation: (i) using the original TCP-based data
exchange and (ii) using UDP and the DAIET protocol, but
without executing data aggregation in the switch.

Figure 3 shows a box plot of the reduction, across all the
workers, in the total data volume and execution time at the
reducers observed with DAIET compared to the first baseline.
We observe that in-network aggregation provides a 86.9%-
89.3% reduction of the amount of data received by the reduc-
ers. Because the smaller the data the less processing time at
the reducer, we measured a median decrease of 83.6% in the
execution time at the reducer, despite the received data are
not sorted and require a complete sort operation.

Because current P4 hardware switches are expected to
parse only around 200-300 B of each packet6, we consider
that one DAIET packet can contain at most 10 key-value pairs.
Thus, our implementation generates more packets compared
to the TCP baseline. However, the data volume reduction due
to in-network aggregation is greater than the overhead caused
by the additional packets. Figure 3 presents the reduction in
the number of packets received by the reducer compared to
the two baselines.We observe a median and maximum reduc-
tion of 90.5%, with a minimum of 88.1% compared with the
baseline using UDP without in-network aggregation. Even
considering the TCP baseline, we still measured a median
42% reduction in the number of packets. It is worth noting
that an additional overhead in the data volume and number of
packets is given by the fixed-size length of strings in our im-
plementation, that forces a 16 B key even for smaller strings.
This limitation will be removed in a future version of DAIET.

5Our current prototype does not manage collisions.
6According to private conversations with a P4 hardware vendor.

6 RELATED WORK
NetAgg [21] is a software middlebox platform that provides
an on-path aggregation service. NetAgg middleboxes are
deployed on servers directly attached to network switches
through high-bandwidth links, composing an aggregation
tree in the network. This requires changes in the network
architecture. Furthermore, for computation-bound applica-
tions the middleboxes can become a performance bottleneck.
SHArP [15] is designed to offload MPI collective operation
processing to the network. Reduction operations are per-
formed on the data as it traverses a reduction tree in the
network, reducing the volume of data as it goes up the tree.
SHArP only supports a limited set of combiners, since they
are directly implemented in the switch ASIC. Unlike NetAgg
and SHArP, DAIET does not modify the network architecture
and provides more flexibility to support a variety of applica-
tions. Similar to NetAgg, Camdoop [8] also supports on-path
aggregation for MapReduce-based applications. It leverages
the capabilities of Camcube [2] which uses direct-connect
protocols where all traffic is forwarded between servers with-
out switches. Thus, it requires a custom topology and it is
incompatible with a common data center infrastructure.

Besides data aggregation, IncBricks [20] is an in-network
caching fabric with basic computing primitives. It comprises
of programmable switches and smart NICs. It uses a key-value
store as the application interface and allows to offload com-
mon compute operations on key-value pairs; e.g., increment,
compare and update. Their design shifts the computation to-
wards smart NICs since switches have limited storage. A
specialized, in-switch key-value store for network measure-
ment collection and aggregation also appears in Marple [25].

7 OUTLOOK
Programmable network hardware is finally emerging and
provides the opportunity to revisit the idea of performing
computation inside the network. Given ever more stringent re-
quirements for data center applications facing hardware scala-
bility bottlenecks and the end of Moore’s law, programmable
hardware appears to be the next frontier for achieving higher
levels of efficiency and speed. Google’s Tensor processing
unit and Microsoft’s Catapult projects are just two examples
of this ongoing trend. We believe that the time has come
to entrust network devices with part of the tasks typically
executed by software. However, programmable networking
devices have a distinct network machine architecture with
stringent constraints. Determining the kinds of in-network
computation, streaming algorithms and workloads that are
going to be feasible under these architectural model is a major
open challenge. As in the case of TCP offloading [23], we
might need to see a period where variants are proposed, tested,
evolved, and sometimes discarded. Data aggregation appears
as a natural fit for in-network computation and our results are
promising. But we view our work merely as an initial step
towards the larger goal of judicious in-network computing.

82

•Network controller is informed of MapReduce job
◦ Configures switches in aggregation tree to perform aggregation

• Significant network traffic reduction à reduced run time
•How to make robust to loss? Encryption?

Aggregation Tree Reduction Results

Copyright © 2018 – P4.org

The P4 Language Consortium

• http://p4.org

• Consortium of academic
and industry members

• Open source, evolving,
domain-specific language

• Permissive Apache license,
code on GitHub today

• Membership is free:
contributions are welcome

• Independent, set up as a
California nonprofit

83

