
Heavy Hitter Detection

Guest lecture for CS344
Jeongkeun Lee, Georgios Nikolaidis

Certain slides by courtesy of folks at Barefoot Networks

1

What are Heavy Hitters?

• a.k.a elephant flows
◦ Major source of network congestion
◦ Increase flow completion time for (delay-sensitive) mice flows
■ Bit-torrent can kill your Facetime
■ Hadoop traffic can penalize online banking transactions

• Small number of flows
that constitute most of the network traffic
over a certain amount of time (to differentiate from micro bursts)

• Definite numbers depend on various factors
◦ Port speed, network RTT, traffic distribution, application policy, etc.
◦ E.g., more than 50KB within the last 1 ms

è at least 400Mbits/s è up to 250 concurrent heavy hitters @ 100G port
2

Why Detect Heavy Hitters?
• To treat them differently
◦ Queuing: put them in low-priority queue while mice go to high-priority
◦ Flow rate control: allocate fair 1/n bandwidth
◦ Traffic engineering: route them through high-bandwidth paths
◦ Visibility: know the culprits of a congestion

◦ Or drop them!

3

How to Detect Heavy Hitters?

• HHD is basically ‘rate’ estimation
◦ Number of bytes (or packets) per unit time

• Can I install match-action rules to track per-flow rates?
◦ No, expensive: there could be millions of flows active in the network
◦ And slow: heavy hitting can be transient, shorter than rule-insertion time from

control plane

• Detection needs to be fast
◦ Immediate detection enables immediate reaction
◦ Sub-millisecond detection & reaction is critical in datacenters w/ small RTT and

shallow buffer
◦ Hence, we want rate estimation, HHD, reaction all in H/W data-plane

4

Detection needs to be efficient to fit in H/W

•On-chip SRAMs are fast, but small
◦ Need to find heavy hitters out of millions of flows
◦ Storing 5tuple flow key is too expensive

•ALU operations on high-speed H/W may be limited
◦ E.g., no floating-point arithmetic
◦ Note: programmable data-plane design principle
■ Programmability should not sacrifice speed
■ Rule of thumb: process 1 packet per cycle

5

HHD approaches
• Top-N flow selection
◦ Detect N number of flows with highest rate
◦ E.g., space saving algorithm and its variants (HashPipe @ SOSR’17)
◦ Less sensitive to rate threshold
◦ Algorithm complexity and memory requirements can be high
◦ (Need separate rate estimation for the top-N flows)

• Threshold-based
◦ Estimate rate and compare it to a threshold
◦ Ways to estimate flow rates in data-plane
■ Time-decaying low-path filter (may need H/W support)
■ Count-min sketch: counting Bloom filter (data structure) + periodic reset

• This lecture uses count-min sketch
6

• Counting
◦ Each flow computes multiple hash indices using flow 5 tuple as hash key
■ hash-1(flow), hash-2(flow), ..., hash-k(flow)
◦ Add packet size to the indexed locations of counter array
◦ Flows can hash-collide, adding to a common counter instance

◦ Take minimum of the counter values. count(f1) = min(100, 100, 300)

HHD via count-min sketch

7

0 100 0 100 0 300 0 0 200 200

f1 f2

+100 +200

• Rate estimation
◦ Rate = min_value / measurement_time
• Detection
◦ Compare the rate to a threshold
• Periodic reset for timely detection
◦ Reset counter values and measurement time to zero

• We will detail design of each step, starting from counting

HHD via count-min sketch

8

Counting: H/W-friendly counting bloom filter
•Using multiple hash functions is key for estimation accuracy
◦ If all hash locations collide with other flows è over-estimation
◦ (count-min sketch never underestimates)
◦ Optimal # of hash functions can be larger than one

•Multiple, concurrent access on a share memory can slow down
speed

• Solution: create K counting arrays for K hash functions
◦ Each hash function accesses a dedicated array exclusively
◦ Note: parallel bloom filter is known to yield comparable accuracy
■ “Implementing Signatures for Transactional Memory”, MICRO 2007.

◦ Using parallel arrays has another benefit (later slide).
9

Flow A

Hash table 1

Hash table 2

Hash table 3

Hash table 4

New packet: X
bytes

+
X

+X

+X

+X

Flow A

Hash table 1

Hash table 2

Hash table 3

Flow C

Use minimum value

Hash table 4

Flow B

Rate estimation and thresholding
•Rate estimation and thresholding require floating point

arithmetic (division or multiplication)

• If your target system doesn’t support it
you can memoize threshold values for different measurement

time ranges

12

Periodic Reset
•Use values to calculate the average rate of a flow since the last

reset
•When the counter is too “young” it gives us observations over

too short of a duration
◦ Too sensitive, cannot filter out micro-burst of mice flows

•When the sketch is too “old”, identifying recent heavy hitters
becomes hard (since we average over the duration since last
reset)

13

Idea: Stacked count-min sketches

1 ms d
t

1 ms d
t

1 ms d
t

1 ms d
t

1 ms d
t

…
Write

Read
/Write

Each stack is a set of K parallel filters

Idea: Stacked count-min sketches
• Shorter dt leads to better accuracy
• Shorter dt also means more resources
• Compromise: let’s use two sketches

“Ping-pong” two count-min sketches

1 ms 1 ms

1 ms 1 ms

Reset

Reset

Write

Read
/Write

Reset

Reset

1 ms Sketch A

Sketch B

Ping-pong and reset must be synchronous
• From control plane
◦ Switch sketch A to B and then reset A
◦ Reset entire arrays can take time
◦ Using K parallel arrays help
■ Reduce reset time by 1/K, maximize write time

•H/W assisted approach
◦ Packet generation triggered by h/w clock
◦ P4 program acts on the special h/w-generated pkt

17

Backups

18

Non-networking usecase of HHD
• In-network caching (NetCache @ SOSP’17)
◦ ToR switch works as a cache for a rack of memcached nodes
◦ Using HHD, switch itself can detect hot key-value items for caching w/o relying on a

separate controller
■ Hot item = a key with lots of read request

19

H/W-friendly count-min sketch

•Optimal number of hash functions to minimize the number of
overestimated flows
◦ ! = #

$ ln 2
◦ k : # of hash functions
◦ m: array size
◦ n: number of flows

• If consider the size of overestimations
◦ “Summarizing and Mining Skewed Data Streams”

https://www.cs.rutgers.edu/~muthu/cmz-sdm.pdf

20

Buffer
M M

21

P
ro

gr
am

m
ab

le
P

ar
se

r

PISA: Protocol Independent Switch Architecture
Match Logic
(Mix of SRAM and TCAM for lookup tables,
counters, meters, generic hash tables)

Action Logic
(ALUs for standard boolean and arithmetic operations,
header modification operations, hashing operations, etc.)

Recirculation

Programmable
Packet Generator

CPU (Control plane)

A

…

A

…

Ingress match-action stages (pre-switching) Egress match-action stages (post-switching)

Generalization of RMT [sigcomm’13]

What we have seen so far:
Adding new networking features

1. New encapsulations and tunnels
2. New ways to tag packets for special treatment
3. New approaches to congestion control
4. New ways to manipulate and forward packets: e.g. splitting

ticker symbols for high-frequency trading
5. News ways to speed-up memory cluster

22

What we have seen so far:
World’s fastest middle boxes

1. Layer-4 load connection balancing at Tb/s
– Replace 100s of servers or 10s of dedicated appliances with one PISA switch
– Track and maintain mappings for 5 ~ 10 million HTTP connections

2. Stateless firewall or DDoS detector
– Add/delete and track 100s of thousands of new connections per second
– Include other stateless line-rate functions

(e.g., TCP SYN authentication, sketches, or Bloomfilter-based whitelisting)

23

What we have seen so far:
Offloading part of computing to network

1. DNS cache
2. Key-value cache [ACM SOSP’17]

3. Chain replication
4. Paxos [ACM CCR’16] and RAFT consensus protocols
5. Parameter service for DNN training

24

• Top question at P4D2’17 Fall Panel session

• Data being packetized and forwarded between distributed
system components

• Apps that can be implemented without (much) sacrificing
speed, power, cost
– Tradeoff point can change based on deployment model: in-switch

vs. dedicated appliance vs. smartNIC
25

Which app P4 will succeed (or not)?

PISA/P4 design choices
• No loop in match-action stages
– (Loop with a max limit is allowed in parser)
– HW and language both modeled as a DAG
– Guarantee bandwidth and latency

• Tables are read-only in data-plane
– Table update is computationally expensive
– Control plane only can add/delete/update table

entries

26

App design challenges
• “Learning”

– Learning (table write/update) is done by CPU
• E.g., L2 MAC learning, connection learning

– CPU-HW speed mismatch may break consistency
– App-specific solution may exist (e.g., Bloomfilter in L4

connection LB)
– Some device may support h/w learning

• State is stage local
– May need recirculation and/or replication for fast state

propagation
– Consistency model and techniques from distributed systems can

help
27

PISA: An architecture for high-speed
programmable packet forwarding

28

event processing

• I/O events
• Timer events
• State events

Buffer
M M

29

Pr
og

ra
m

m
ab

le
Pa

rs
er

PISA as a event processing engine
Memory & data structure
maintaining states
(per-switch/port/queue/flow/...)

Event detection and handling actions

Recirculation (state machine update)

Programmable
Packet Generator

(~= Timer)

CPU (Control plane)

A

…

A

…

Ingress match-action stages (pre-switching) Egress match-action stages (post-switching)

• PISA and P4: The first attempt to define a machine
architecture and programming models for networking in a
disciplined way

• Network is becoming yet another programmable platform

• E.g., “network storage”
– Yesterday, it meant storage system connected by network
– Tomorrow, storage system gets faster and more reliable by the

network

30

Observations

